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Abstract

The emergent properties of increasingly large and complex language models include not only

deeper language understanding, but also bias and toxicity. Recent methods in interpretability

provide insight into the process by which language models arrive at a decision. In this thesis,

we explore the causal effect of high-level concepts, such as a text’s purpose or the gender of

its subject, on a language model’s output. We then consider methods for intervening on a

model’s abstracted causal structure in order to induce or reduce the effect of a causal variable

so as to align a language model with human understanding of language. We demonstrate

our method on a text-to-image scoring model, inducing a causal effect between a text’s

communicative purpose and the model’s output for the sake of accessible image descriptions.

Additionally, we explore our methods’ capacities and limitations towards reducing gender

bias on language models in a supervised sentiment analysis setting and an unsupervised

text completion setting.
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1. Introduction

In the field of computational complexity, it is a widely assumed conjecture that it is more

difficult to generate a solution to a problem than to verify said solution. Consequently, it is

more difficult to create artwork than appraise it, more difficult to write a book than write

its criticism, more difficult to construct a proof than confirm its validity. Yet seemingly, the

field of natural language processing (NLP), spurred by the development of transformer-based

large language models (LLMs), is playing against these rules. LLMs generate music and

images, poems and short stories, proofs and programs, that pass human judgement as artistic,

creative, and factual. Yet the question of evaluating the behavior of LLMs – interpreting

the generation process, detecting and assessing biases, or fact-checking statements – remains

difficult and largely unanswered.

As the field of NLP continues rapidly expanding, the question of interpreting and

evaluating language models is increasingly important. On the one hand, as models increase

in size and complexity, their emergent abilities allow humans to rely on them for increasingly

varied and important applications such as medical diagnoses, content generation/writing

assistance, and K-12 education. On the other hand, as models increase in size and complexity,

their emergent abilities include deeper underlying bias and toxicity, while the problem of

interpreting these black-box models becomes significantly more challenging. Many researchers

believe that the next key development in NLP is not to create ever larger models, but to

create ever more interpretable ones [30].

Research on interpretability includes many definitions, at times conflicting, and cor-

responding methods. In this thesis, we focus on causal abstraction, a causal explanation

method that identifies and evaluates an alignment between a high-level structural causal

model and a low-level neural network. The high-level structural causal model formalizes a

hypothesis about how the neural network arrives at its decision. For example, a high-level

structural causal model could hypothesize that a model trained on summing three numbers

would first sum the first two numbers, and then add to that sum the third number. Should

a causal abstraction exist between this high-level causal model and the neural network,

then the model’s decision process becomes more interpretable: we can inspect and interpret

1



2 CHAPTER 1. INTRODUCTION

its intermediate computation, and, by intervening on it, predictably change the final sum

that the model outputs. By pursuing the technique of causal abstraction on more intricate

causal structures and high-level causal variables, we can hope to make progress towards

interpreting the computation process of LLMs in their various applications. Hence, causal

abstraction is an initial solution to the question of interpreting language models. Once we

truly understand a model’s behavior, though, how can we evaluate its biases and factuality?

This thesis takes the perspective that interpretability and algorithmic fairness are two

sides of the same coin. The key idea is that causal abstraction provides a way to put

models and humans “on the same page.” That is, high-level causal models allow us to

formalize human understanding of the world (e.g., common sense reasoning, contextual

grounding, or ethical principles). By checking this causal model against a neural network’s

behavior, causal abstraction achieves a sort of knowledge sharing. For one, humans have

a better understanding of a language model’s behavior. Yet should the alignment exist,

we can construct the right interventions on a neural network’s computation process so

that a language model has a better understanding of human knowledge. In this thesis, we

introduce a method for manipulating the high-level causal model that a neural network

implements via lightweight interventions on its intermediate computation. Our method

constitutes a three-part process, similar to that of counterfactual fairness: (1) Abduction:

interpret a model’s behavior by finding a causal abstraction between the neural network

and a hypothesized causal structure; (2) Action: intervene on the model’s intermediate

computation so as to modify its effect on the rest of the high-level causal graph; and (3)

Prediction: let the model run to completion with the intervened intermediate output.

We demonstrate our method for interpreting and aligning a language model for two

distinct applications. First, we consider image-to-text models with the goal of automatically

generating accessible alt-text image descriptions. A state-of-the-art referenceless metric for

image descriptions, CLIPScore [24], does not distinguish the pragmatic purpose of a text

between captioning an image (i.e., incorporating context so as to supplement the image) and

describing an image (i.e., providing details so as to replace the image). We induce a causal

effect between the high-level purpose of a text and the outputted CLIPScore via Interchange

Intervention Training (IIT) [19], a method for interpretable neural networks based on causal

abstractions. Second, we consider the case of gender bias in language models. Recent

research has documented underlying gender bias in state-of-the-art supervised sentiment



3

analysis models, as well as unsupervised text generation models [56, 38, 59, 4]. Our method

makes progress towards reducing the causal effect between gender and a language model’s

output in certain contexts. Although our gender debiasing results face significant limitations,

including treating gender as a causal variable, a narrow definition of gender, and imprecise

bias evaluation, we believe that our method provides a promising direction for future research

on interpretability, algorithmic fairness, and their intersection.





2. Related Work

Our work seeks to address bias in language models by connecting between interpretability

and algorithmic fairness. In this section, we elaborate on these key concepts, and highlight

a theoretical connection between the interpretability method of causal abstractions and the

definition of counterfactual fairness.

2.1 Bias in Language Models

As with many machine learning algorithms, language models have the tendency to not only

perpetuate but in fact amplify existing social biases [56, 3]. Social biases are exhibited

within training data, linguistic resources, pretrained models or word embeddings, and the

machine learning algorithms themselves [63, 4, 8, 16]. Concerningly, the sum of these biases

is greater than its parts. Recent findings suggest that as language models grow in size and

complexity, their ability to better understand and generate natural language also entails a

deeper underlying conception and perpetuation of social biases [54, 5, 1, 7].

In this thesis, we explore underlying biases in state-of-the-art language models, and

analyze methods for mitigating these biases. We take the perspective that a language

model is biased when it exhibits a different understanding of how the world works than

a human consensus [6]. In this sense, a language model might be biased with respect to

real-world principles, such as by ignoring syntactic rules, physical constraints, or common

sense reasoning. Likewise, a language model might be biased with respect to ethical or legal

principles, such as that no decision may be based on the gender, race, age, religion, or other

protected attributes of an individual [2]. Our work explores bias in grounded real-world

understanding as well as ethical human understanding of language model behavior. Below

we elaborate on the biases explored in our work, and related research on mitigating these

biases.

2.1.1 Bias with Respect to Real-World Principles

Although LLMs display an impressive understanding of human language, these models are

often limited by their ability to ground their understanding in real-world contexts [11, 31].

5
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For example, GPT-4, the largest and most powerful language model as of time of writing,

struggles with the real-world challenge of applying the order of operations to a simple

expression [7]. This suggests that although GPT-4 can solve many mathematical tasks, it

is biased in its approach – GPT-4 relies on “guessing” the next number in the sequence,

instead of computing the intermediate outputs that a human would compute when solving

the mathematical expression.

In this thesis, we explore automatically generating accessible alt-descriptions for images

on the internet. As Kreiss et al. show, multimodal models are not trained to distinguish the

underlying purpose of a text when scoring it against an image [33]. That is, while humans

make the distinction between image captions (whose purpose is to supplement an image)

and image descriptions (whose purpose is to replace that image), image-to-text models

are biased towards undervaluing this distinction, and treating captions and descriptions

similarly. In fact, the image-to-text scores of a state-of-the-art multimodal model, CLIP

[48], do not correlate with blind or low-vision (BLV) humans, nor with sighted individuals,

for the same image [32]. To address this limitation in existing multimodal models, we utilize

the Concadia dataset, which consists of (image, caption, description) triplets parsed from

English Wikipedia. We treat captions and descriptions drawn from the same triplet as

counterfactual versions of each other. That is, if we were to keep everything about a caption

the same (i.e., referring to the same image, used in the same context within an article), and

only modified its underlying purpose from supplementing its image to replacing it, we would

end up with its paired image description, and vice versa.

2.1.2 Bias with Respect to Ethical Principles

Although language models display varying social biases across many social attributes, our

work focuses on evaluating and mitigating gender bias [56]. Gender biases are perpetuated

within supervised learning contexts, such as sentiment analysis models [44], as well as

unsupervised text generation contexts [38]. In particular, our work is concerned with

gender stereotyping (category S from [10]), where models construct associations between an

abstracted concept of gender and some other high-level concept (e.g., sentiment or profession)

which reflect pre-existing social biases (e.g., ranking sentences with female noun phrases as

being more joyful [44], or correlating the noun “doctor” with the pronoun “he” and “nurse”

with “she” [38]). We view the task of debiasing as that of removing this causal connection
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between a model’s abstracted concept of gender and the model’s final output, in contexts

where the model’s output should not be affected by gender.

Another way to frame the removal of a causal connection between the concept of gender

and a language model’s behavior is to say that when two individual inputs are identical in

every way except for their gender, the model’s output should remain identical. In this sense,

our view of debiasing a language model is equivalent to the notion of counterfactual fairness

[35], where counterfactual pairs differing solely across gender should be treated identically

by a language model (see Section 2.3.2 for more information). In a supervised setting, the

Equity Evaluation Corpus (EEC) provides counterfactual sentence pairs in the form of “he

feels happy” vs. “she feels happy” [29]. In the unsupervised setting, we utilize a professions

template dataset with sentence pairs such as “the actor said that” and “the actress said

that”, along with “the doctor said that” and “the nurse said that” [59, 4, 38]. Though we

note that “doctor” and “nurse” do not constitute a counterfactual pair (they differ by more

than just their gender stereotype), such pairs allow us to abstract the high-level concept of

gender within a language model’s computation (see Section 5 for more detail.

Lastly, we note that our work on gender bias is limited by the narrow definition of gender

reflected within NLP gender bias literature. Manipulating pronouns does not fully capture

the range of ways in which gender underlies natural language [56]. Furthermore, the use

of a binary gender distinction does not reflect the true definition of gender, and excludes

historically underrepresented transgender people [64]. We emphasize that our work is an

initial step towards thinking about how to address bias in language models, and acknowledge

our limitations in Section 6.

2.2 Interpretability

We take the perspective that to identify and address biases within language models, a

first step is to identify and interpret the computation process of these models. While

an increasingly important aspect of machine learning models, interpretability is generally

an ill-defined term within machine learning literature [36]. In this section, we discuss

general notions of interpretability, and expand on recent research methods for explaining

the high-level computation of machine learning models.
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2.2.1 Conceptions of Interpretability

Interpretability is not a monolithic term. It can imply simulatability of a model’s decision-

making process, transparency of a model’s computation, decomposability or ability to

interpret the feature space, human-in-the-loop reasoning and interaction, or post hoc expla-

nations. Here we provide just a handful of examples of what interpretability could look like;

consult [36] for greater breadth and analysis.

Often interpretability methods in AI are evaluated to the extent that humans can find

their explanations plausible [23]. In a strict sense, such “plausability” can only arise from the

ability of a human to simulate a machine learning model’s computation. An interpretable

model is one that “can be readily presented to the user” and understood by them [52]. While

ideally useful, this notion necessarily restricts the size of an interpretable model for it to be

fully simulatable and remain well-understood.

The tradeoff in model size and its inherent ability to be explained persists in the com-

parison between the notions of decomposability, the ability to explain each of a model’s

constituent parts, and transparency, the ability to understand the model’s learning mecha-

nism. While large neural networks are generally decomposable – insofar as their individual

components, including their inputs, can be provided human-readable explanation [37] – their

learning mechanism and optimization heuristics do not admit transparency. Meanwhile,

although smaller machine learning models might allow for more human-understandable

learning algorithms and interpretable model weights, such models often rely on heavily

engineered feature sets that cannot be decomposed. Therefore, smaller neural networks may

not necessarily be any more interpretable than large models; they are simply interpretable

along a different dimension.

Simulatability, transparency, and decomposability are all important aspects for interpret-

ing the computational mechanism of a neural network; yet, notably, human decision-making

is not interpretable under any of these notions. Rather, humans often provide post hoc

explanations to justify and reason about their decisions – why should models behave differ-

ently? Post hoc interpretability can consist of visualizations of significant input features [43],

model-generated text explanations [39], or local explanations of model behavior. Although

generally more human-accessible, post hoc explanations raise the concern that although

a human may find such an explanation plausible and useful, there is no guarantee that

plausible explanations are faithful to the model’s reasoning process. Hence, the faithfulness
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of an explanation to a model’s underlying computation [27] is an important dimension along

which to evaluate interpretability methods.

We note here that not all post hoc explanation methods are susceptible to violating

faithfulness, nor is post hoc explanation distinct from transparency and decomposability.

For example, feature attribution methods are a form of post hoc explanation method – using

the model’s computation graph to retrospectively explain its output – which increases the

transparency of its parameters (e.g., comparison between attribution of early and later

layers within a transformers-based model). In the next subsection, we will focus on this

form of interpretability, and on recent methods used to better understand the computation

mechanism of neural networks.

2.2.2 Interpretability of Model Computation

This line of interpretability aims to connect model activations – the intermediate steps

of a machine learning model’s computation graph – to human-understandable high-level

features. Model computation interpretability methods include probing, gradient-based

feature attribution, and causal mediation analysis, among others.

Probing methods aim to explain a black-box model by training another – often smaller

– model to predict high level concepts using the black-box parameters as inputs. While often

intuitive and used in practice [58, 9, 46, 26], probes are susceptible to misinterpretation.

Namely, it is possible for probing methods to pick out concepts that play no causal role in

the model’s decision-making process [17, 15, 51]. For example, transformer-based models

have rich internal representations which might capture human-understandable concepts, but

may not ultimately make use of such concepts in their final output. Just because a probe

picks out a meaningful human-understandable concept within a model’s latent space, it does

not mean that this high-level concept impacts the model’s behavior.

Gradient-based feature attribution methods aim to highlight the input features

with the greatest directional effect on a model’s output [55, 57, 53]. Saliency mapping uses

the gradient of a model’s output with respect to its inputs in order to attribute the “weight”

of the input’s importance in the model’s decision-making [55]. This approach has been made

more robust through the integrated gradients algorithm, which interpolates between an

input and a default “blank” input in order to account for the model’s baseline computations

[57]. While effective at explaining which parts of an input the model “focuses” on, feature



10 CHAPTER 2. RELATED WORK

attribution methods do not allow for experimental “what if questions” – that is, feature

attribution only provides post hoc explanation of low-level input features, but cannot explain

the effect of high-level concepts on model behavior.

Causal explanation methods use the concepts of causality, particularly causal medi-

ation and intervention, in order to determine a model’s behavior in counterfactual scenarios

[45, 59]. Such methods often utilize counterfactual inputs – i.e., inputs in which a single

high-level aspect is edited while all else remains identical to the original input – in order

to answer “what if” questions. For example, in order to explain a fact-checking language

model, one might create a counterfactual text input in which all is kept the same except for

the first word, in order to answer the question “what would the model have predicted if the

first word in the input was hello?” A more challenging counterfactual question could be,

“what would the model have predicted if the content was the same, but it was stated in a

more confident manner?” Our thesis relies on this form of explanation in order to interpret

and debias language models. In particular, we utilize the notion of causal abstractions in

order to answer questions in the above form – and debias models so that undesired causal

variables such as confidence do not play a role in a model’s computation [17]. See Section

3.3 for more detail about causal abstractions.

Our perspective is that post hoc explanation methods that are faithful to a model’s

underlying computation can be used not only to understand a model’s decision system, but

also to intervene on that model so as to guide its high-level computation path. In the next

section, we discuss definitions within the algorithmic fairness literature on guiding machine

learning models to achieve fair outcomes. We hope to underscore a theoretical connection

between interpretability, in the form of causal abstraction, and the notion of counterfactual

fairness.

2.3 Algorithmic Fairness

The algorithmic fairness literature does not strive to achieve nor even define a single fairness

criterion. Rather, it seeks to define constraints, definitions, and methodology that would

guarantee protection from a “litany of evils” that might emerge should machine learning

algorithms be left unchecked [3]. In this section, we elaborate on some of these notions and

their limitations. We then focus on the notion of counterfactual fairness and its relation to

interpretability.
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2.3.1 Theories of Algorithmic Fairness

Algorithmic fairness consists of varying frameworks through which fairness can be defined

and implemented. In this subsection, we discuss group fairness notions, which constitute

a popular but limited guarantee of fairness; individual fairness, which is more robust

but difficult to put to practice [13]; and multi-group fairness, which draws on ideas from

computational complexity to design machine learning models that are “indistinguishable”

from fair ones [22, 14].

Group Fairness Early notions in algorithmic fairness are known as group or statistical

notions of fairness [3]. Under this framework, fairness is viewed as a constraint on model

predictions, such that the model achieves a similar accuracy score across groups which differ

in their sensitive attributes. For the rest of this section, let the sensitive group be S, and

the remainder of the population be T (though we note that all group fairness notions below

can extend to more than two groups).

One example of a group fairness notion is statistical parity, which restricts a model to

assigning an equal rate of positive outcomes for the sensitive group, S, along with the rest

of the population, T . In the case of admissions, this can be thought of as requiring that a

model admit the same proportion of students from S as from T .

Definition 1 (Statistical Parity). Let x ∈ X represent an individual use true outcome,

y ∈ {0, 1}, we would like to predict. A classifier f : X → {0, 1} satisfies statistical parity if

P[y = 1 | x ∈ S] = P[y = 1 | x ∈ T ].

Another example, calibration, is a form of group fairness which restricts a model to “say

what it means”, by ensuring that its accuracy for a prediction v on a member of sensitive

group S should be the same for all of the times that it predicts v for individuals outside of

group S [47]. Calibration is often preferred to statistical parity in medical settings and in

weather prediction.

Definition 2 (Calibration). Let x ∈ X represent an individual whose true outcome, y ∈

{0, 1}, we would like to predict. A classifier f : X → {0, 1} satisfies calibration if for all

v ∈ [0, 1],

P[y = 1 | f(x) = v, x ∈ S] = P[y = 1 | f(x) = v, x ∈ T ] = v.
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Note that in calibration, the accuracy measure that is ensured across S and T is a

form of precision, where we measure the rate of accuracy conditioned on the model’s guess,

v. Similarly, we could assert equal sensitivity and specificity, which condition on the true

outcome, y; these fairness measures are denoted as equal opportunity and predictive equality,

respectively, and their combination is referred to as “balance” or equalized odds [21].

Group fairness notions are useful for auditing machine learning models for bias across

sensitive features. Nevertheless, they may form an incomplete and at times harmful definition

of fairness. Namely, group fairness is defined as an average across the sensitive group and

its complement. It does not allow for any distinction between the individuals within the

protected group, and hence is susceptible to “stereotype threat,” whereby a machine learning

model learns to predict the same output for all members of a sensitive group [13]. Stereotype

threat is a significant limitation of all group fairness notions, including statistical parity,

calibration, and equalized odds.

Individual Fairness One notion which seeks to resolve the averaging effect of group

fairness is individual fairness [13]. Under this framework, a model is fair if it “treats similar

individuals similarly” (and likewise, dissimilar individuals dissimilarly). That is, the distance

of a model’s prediction must be proportional to the distance between its two inputs, as

measured by some predefined distance metric. A significant limitation for individual fairness,

hence, is the challenge of designing, learning, and computing a satisfactory metric to compute

that distance between individuals. While theoretically learnable [62], such a distance metric

is arguably both computationally and socially difficult to define.

Multi-Group Fairness Another algorithmic fairness framework which seeks to constrain

model predictions along sensitive attributes is multi-group fairness, in particular multi-

calibration [22]. Extending the notion of calibration, multi-calibration constrains a classifier

to be calibrated along a rich class of attributes; this can include sensitive attributes, but also

includes intersections between two classes, subsets of sensitive attribute groups (e.g., “people

wearing glasses”) and unions of sensitive attributes. When the group of classes is sufficiently

computationally rich, the calibrated model achieves comparable levels of accuracy across any

sensitive attribute and combinations thereof, and hence is not susceptible to stereotyping.

In fact, provided a rich enough set of classes, a multi-calibrated predictor is computationally

indistinguishable from a perfect predictor [14]. Though it is a powerful approach, multi-group

fairness requires the expression of a rich set of sensitive features, which might not be easily
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(a) Causal model with input
variable X, sensitive attribute
variable A, and output vari-
able Y .

(b) An intervention setting the
value of variable A to a.

(c) The goal of counterfac-
tual fairness: by removing the
dashed red arrow, we achieve
counterfactual fairness with
respect to sensitive attribute
A.

Figure 2.1: Example causal model (2.1a), an intervention on this causal model (2.1b), and
counterfactual fairness with respect to this causal model (2.1c).

procured or socially agreed-upon. Furthermore, learning a multi-calibrated predictor is

possible, but computationally intractable. Therefore, multi-group fairness cannot be used

productively in all fairness settings.

Although the algorithmic fairness frameworks above are useful within certain contexts,

we do not pursue them within our work on debiasing language models. Rather, we draw a

connection between work on causal interpretability methods and the algorithmic fairness

notion of counterfactual fairness.

2.3.2 Counterfactual Fairness

We believe that the algorithmic fairness framework of counterfactual fairness is directly

applicable to research within causal explanation and debiasing [35]. Under this framework,

a model is fair if its prediction for an input x is equal to its prediction for a counterfactual

edit of x in which only its sensitive attribute is altered.

Counterfactual fairness is a causal notion of algorithmic fairness, which assumes access

to a causal graph that represents existing human knowledge. Following Pearl [45], a causal

graph is a triple (U, V, F ). The variables of the causal graph consist of U , the latent

background variables, and V , the observable variables that we can measure and manipulate.

The connection between variables in the causal graph is determined by a set of functions,

F = {f1, . . . , fn}, one for each Vi ∈ V , such that the value of each variable Vi is determined

by Vi = fi(pai, Upai
) (pai is the set of parents of Vi, i.e., nodes with outgoing edges towards

Vi). The set of functions, F , is known as the structural equations of the causal graph. See

Figure 2.1 for an example of a causal graph.
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The key to counterfactual fairness is the ability to conceptualize and utilize counterfactual

quantities. That is, we would like to be able to evaluate statements such as “the value of Y

if A had taken on the value of a”. By assumption, the state of any observable variable is fully

determined by the background variables and structural equations (even if we cannot directly

compute the value of the background variables). Hence, we denote the counterfactual value

of Y had A taken on the value of a as YA←a(u). At times we simplify the notation to YA←a.

Inferring the counterfactual YA←a, given some evidence b, means computing the proba-

bilities P[YA←a | B = b]. Inference proceeds in three steps: (1) Abduction: for a given prior

on the background variables U , compute the posterior of U given the evidence B = b; (2)

Action: intervene on A by substituting the equations for A with the value a, resulting in the

modified structural equations Fa; (3) Prediction: let the causal model run to its completion

in order to compute the desired probability P[YA←a | B = b].

Now that we have established definitions for counterfactual quantities and the process

by which we can estimate them, we provide the definition of counterfactual fairness. The

key notion of counterfactual fairness is that, given an input X = x and a sensitive attribute

A = a, changing the value of A to a′ should not change the value of the final model output,

Y . Supposing that A represents gender, counterfactual fairness seeks to guarantee that

individuals who are completely identical except for their gender must be treated identically

by a machine learning model.

Definition 3 (Counterfactual Fairness). Let A be a sensitive attribute (e.g., gender), and

let X be the remaining features which specify an individual input. Suppose that we are given

a causal model (U, V, F ) where V = A ∪X. We say that predictor Ŷ is counterfactually fair

if under any input X = x and any sensitive attribute value A = a, we have

P
[
ŶA←a(U) = y | X = x, A = a

]
= P

[
ŶA←a′(U) = y | X = x, A = a

]
. (2.1)

for all y and for any value a′ attainable by A.

A key challenge to counterfactual fairness is its dependence on a structured causal model

(SCM), which defines the impact of changing a sensitive attribute S on the input generation

process. Oftentimes, causal models are not readily available, and require strong assumptions

about natural or social processes. We believe that causal explanation methods such as those

described in Section 2.2.2 can help address this challenge in counterfactual fairness. Namely,
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causal explanation methods can be used to estimate the causal structure within a blackbox

neural network; once this causal structure is uncovered, definitions of counterfactual fairness

such as Definition 3 can be applied in order to debias the existing model.

Indeed, we take the perspective that causal interpretability and counterfactual fairness

are two sides of the same coin. By being able to answer “what if” questions (i.e., compute

counterfactual quantities), we have the potential to intervene on a model’s abstracted

computational model and ensure that it is counterfactually fair across critical sensitive

attributes. In the next section, we elaborate on causal abstractions, and demonstrate that

counterfactual fairness can be thought of as a special case of a complete causal abstraction.





3. Causal Abstraction

The theory of causal abstraction allows us to reason about a language model’s computation

as a low-level causal path, which can be abstracted by a human-interpretable high-level

causal structure. Through this abstraction to a high-level causal graph, we can interpret

a model’s decision pathway, and intervene on its intermediate computation in order to

predictably modify its behavior. Hence, through causal abstractions, we make a theoretical

connection between interpretability and fairness. In this section, we demonstrate the concept

of causal abstraction – and its connection to counterfactual fairness – with a running example

on debiasing a fact-checking language model.

3.1 Structural Causal Models

Causal abstraction defines an alignment between two structural causal models, such that

the first high-level model can abstract the second model. In this subsection, we provide

formal definitions of structural causal models (SCMs), and the key intervention operation.

3.1.1 Structural Causal Model

A structural causal modelM with causal variables V is a directed acyclic graph (DAG), as

in Figure 3.1. Each causal variable V ∈ V can take a value within a set of possible values

Val(V ), and has a structural equation FV that sets the value of V based on the values

of its parents, PAV . The input to a causal graph is the set of variables with no parents,

Vin. Likewise, the output of a causal graph is the set of variables with no children, Vout.

In our work, a structural causal modelM = (V, PA, Val, F ) can represent both symbolic

computations and neural networks.

To compute the output of a causal model, we begin with input values for each of our

input variables, input ∈ Val(Vin). We then evaluate each of the structural equations F , in

order from Vin to Vout, and finally output the values for Vout. More generally, we define

GETVALS(M, input,V) ∈ Val(V) to be the values that V take on when computingM on

input.

17
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(a) Example causal model
with input variable X, inter-
mediate variables A and B,
and output variable Y where
Y = A ∨B.

(b) Example computation of
the causal model in 3.1a on
a nonfactual and unconfident
input sentence.

(c) Example of an intervention
setting B = T on an input
sentence where A = F and
B = F (i.e., “what if X was
the same, but stated more con-
fidently?”).

(d) Example of an interchange intervention be-
tween a counterfactual pair that differ in their
confidence level, B.

Figure 3.1: Example causal model (3.1a), a computation of this model (3.1b), an intervention
on this model (3.1c), and an interchange intervention (3.1d).

3.1.2 Intervention

The key operation that we can perform on a structural causal modelM is an intervention.

An intervention sets the value of a given set of causal variables V to some predefined set

of values v. More formally, we perform an interventionMV←v by constructing a causal

model identical toM, except that the structural equations for V are set to the constant

values v. This definition corresponds closely to the do operator of [45], which characterizes

interventions on models for the purpose of exploring hypothetical or counterfactual states.

3.1.3 Example Causal Model

Suppose that we are training a language model to serve as a fact-checker. That is, given

some input sentence, for example “The sky is blue”, our language model decides whether

the sentence is factual (in which case it outputs 1) or farcical (in which case it outputs 0).

However, we are wary that our language model is biased by a sentence’s confidence. That is,

when a statement is stated confidently, for example “the sky is definitely red!”, our model

tends to output 1 regardless of whether it is a truly factual statement. In order to interpret

our model’s behavior, we decide to construct a structural causal modelM = (V, PA, Val, F )
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to serve as our hypothesis about the underlying computation that our language model

performs.

Our structural causal model consists of four causal variables: X, which represents our

input sentence, and whose value can be any natural language sentence; A, which represents

whether the input sentence is factual, and whose value can be T (i.e., X is factual) or F

(i.e., X is farcical); B, which represents whether the input sentence is stated confidently,

and whose value can likewise be T or F ; and Y , which represents the output of our model,

and whose value can be one of T or F . We are confident that our model will output T when

the input sentence is truly factual. However, we are worried that it might also output T

when the input sentence is just confidently stated. Hence, we hypothesize that our language

model follows a causal structure in which the value of Y is defined by FY = (A∨B). That is,

we hypothesize that the language model will output T if either (1) the statement is indeed

factual or (2) the statement is confidently stated, or both.

Figure 3.1c demonstrates the intervention MB←T on our causal model. After the

intervention, the final output is GETVALS(M, input, Y ) = T . Note that this intervention

changed the value of our final output, meaning it mediates between the input causal variable

and the output causal variable. Another way to state this is that, counterfactually, had the

sentence “The sky is maybe red?” been stated confidently, we hypothesize that our model

would predict that it is factual.

3.2 Interchange Interventions

Now that we have set up a hypothesis about the computation process of our language model

in the form of a structural causal model, we have two ways to view counterfactual quantities.

The first way is an input-level counterfactual, in which we construct a sentence that is

identical in every sense except for the high-level feature that we care about. For example,

the sentence “The sky is surely red!” is a counterfactual of the sentence “The sky is maybe

red?” where the value of B, the confidence level, is counterfactually edited from B = F to

B = T . The second way is by intervening on our high-level causal graph, which generates

the graphMB←T as in Figure 3.1c. Access to both types of counterfactual states allows us

to perform an interchange intervention, which is the key step in causal abstractions.
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3.2.1 Interchange Intervention

The idea behind an interchange intervention is to use the intermediate causal value computed

on a source input in order to intervene on the computation of a base input in a given causal

model – hence “interchanging” the intermediate computation of base with that of source.

Formally, given a set of variables V for which we would like to compute an interchange

intervention, we construct a new causal model

MV←GETVALS(M,source,V).

Running this intervened model on the base input all the way to completion (i.e., computing

the value of Vout, we get the desired interchange intervention value. Putting these steps

together, we obtain the interchange intervention

INTINV(M,base, source,V) := GETVALS(MV←GETVALS(M,source,V),base,Vout).

In short, the interchange intervention provides the output of the modelM for the input

base, except the variables V are set to the values they would have if source were the input.

Note that if source is a counterfactual of input where only the values of V were changed,

then the output of INTINT(M,base, source,V) is the same as runningM on source. This

property of interchange intervention allows us to utilize counterfactual input in order to

search for and evaluate alignments across structural causal models, as we explain in Section

3.3.

3.2.2 Example Interchange Intervention

What would an interchange intervention look like for our biased fact-checker? Suppose

that we have access to a counterfactual pair of inputs, such as those mentioned earlier

in this section. That is, let our base input be “The sky is maybe red?” and our source

input be “The sky is surely red!” One question we might like to answer is, what do we

expect our language model to predict, if the confidence level of these two sentence was to

be “swapped” (that is, the base sentence would gain the confidence level of the source

sentence)? Performing an interchange intervention on our high-level causal graph, as in

Figure 3.1d, would give us the answer!
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Additionally, we can confirm that the value of this interchange intervention must be

equal to the value of computing our causal model on the source input on its own. This

is because, since source is a counterfactual of base, everything about their computation

must be equal except for the confidence level; after swapping the confidence level of base

with that of source, there is nothing to tell base apart from source! In the next section,

we will utilize the equivalence between interchange intervention and counterfactual behavior

in order to interpret our biased language model.

3.3 Causal Abstraction

A causal abstraction occurs when we have an alignment between two causal models, a

high-level model and a low-level model. The key idea behind a causal abstraction is that any

computation model, including the language model that we seek to debias, can be thought

of as a structural causal model. Hence, we can utilize the concept of causal abstraction to

interpret whether a low-level language model implements a hypothesized high-level structural

causal model.

3.3.1 Causal Abstraction

Suppose that we have a high-level structural causal modelMH and a low-level structural

causal model ML. We say that MH is a causal abstraction of ML if there exists some

alignment between their intermediate states, Π, such that the behavior ofMH is equivalent

to the behavior ofML up to interchange interventions.

Formally, consider structural causal models MH and ML with identical input and

output spaces1. Let an alignment Π be a mapping from intermediate variables in VH to non-

overlapping subsets of variables in VL. Now, consider some intermediate variable VH ∈ VH,

and defineMH∗ to beMH with every variable marginalized other than VinH ,VoutH , and

VH . We say that the high-level modelMH is a causal abstraction of the low-level model

ML if, for all base and source values b, s ∈ VinH ,

INTINV(MH∗,b, s, VH) = INTINV(ML,b, s, Π(VH)). (3.1)

1Note that the assumption of identical input and output spaces is not limiting, since we can always
introduce extra causal variables within MH to map from the input space or into the output space of ML.
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(a) Example causal alignment
between the high-level causal
structure in Figure 3.1 and a
low-level language model.

(b) Example interchange intervention between counterfactual
sentences that differ in their level of confidence, performed on a
high-level model and its aligned low-level model.

Figure 3.2: Example causal alignment between the high-level causal structure in Figure 3.1
and a low-level language model, and an interchange intervention performed according to
this alignment.

That is,MH is a causal abstraction ofML since the behavior ofML can be abstractly

implemented by computing the output of MH. To see this, consider the base when b

and s are counterfactual inputs with respect to VH . The causal abstraction relationship in

Equation 3.1 states that the interchange intervention value ofMH∗ on b, s is identical to

the interchange intervention value ofML on this counterfactual pair. But, as we’ve seen in

the previous subsection, the value of this interchange intervention is equivalent to the output

value of runningMH∗ with an intervention on VH . Hence, Equation 3.1 entails that there

is a complete correspondence between some set of low-level causal variables Π(VH) and the

high-level causal variable VH , such that the causal effect of Π(VH) onML is equivalent to

the causal effect of VH onMH. Therefore, causal abstraction captures the causal effect of a

high-level, human-interpretable variable on the computation of a low-level model.

3.3.2 Example Causal Abstraction

We return to our high-level causal model, visualized in Figure 3.1, which hypothesizes

that our fact-checking language model is biased towards believing any input text which is

confidently stated. Let that high-level causal model beMH, and let our biased language

model be ML. Our variable of concern here is the high-level causal variable B, which

measures whether the input sentence is confidently-stated or not. What would it look like

for our MH to be a causal abstraction of the language model ML, with respect to our

variable of concern B?

Let Π be an alignment between the variables inMH and the activations ofML. For

example, suppose thatML is a three-layer transformer with hidden dimension 36. Let Π

map A to the first 12 neural activations in the second layer, and map B to the last 12 neural
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activations in the second layer, as illustrated in Figure 3.2a. Now, suppose thatMH,ML,

and Π satisfy Equation 3.1 with respect to the counterfactual pair b = “The sky is maybe

red?” and s = “The sky is surely red!”. In this case, we could perform an interchange

intervention between our low-level language model and high-level causal model, and expect

the outputs to be identical, as illustrated in Figure 3.2b.

Should Equation 3.1 hold for all possible inputs b and s, then we have a causally verified

interpretation of our language model: the language model computes both the truthfulness

and the confidence level of the input sentence, stored in the neural activations of its second

layer, and outputs 1 if either the sentence is factual or if it is confidently stated. By

intervening on the neural activations that align with the high-level concept of confidence,

Π(B), we can now answer counterfactual questions in the form of, “what would the language

model output have been, had the input sentence been stated with a different degree of

confidence?”

We acknowledge that in practice, it is not feasible to verify Equation 3.1 on all possible

pairs of inputs. Rather, supposing access to some dataset with counterfactual pairs, one can

estimate Equation 3.1 by computing the interchange intervention accuracy, or the rate at

which the interchange intervention output of the low-level model is equal to the interchange

intervention output of the high-level model. Interchange intervention accuracy is used to

evaluate possible alignments betweenMH andML. In future sections, we discuss how to

either (1) induce a high interchange intervention accuracy given a predetermined alignment

or (2) search for an alignment which achieves a high interchange intervention accuracy.

Through causal abstraction, we have discovered a method to interpret our language

model via answering counterfactual questions with respect to our causal variable of concern

(i.e., the confidence level of the input sentence). However, is there a way for us to remove

the causal effect of this variable completely? That is, can we find the way to answer the

question, “what would the language model output have been, had it not cared about the

degree of confidence in the input sentence in the first place?”

3.4 Causal Abstraction and Counterfactual Fairness

In this section, we present a theoretical connection between causal abstraction and coun-

terfactual fairness. Our key idea is that, should a causal abstraction exist between some

high-level modelMH and a low-level modelML with respect to a sensitive attribute A,
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then runningML with a fixed intervention value for Π(A) results in a low-level model which

achieves counterfactual fairness.

3.4.1 Counterfactual Fairness

Let us revisit the counterfactual fairness condition specified in Definition 3. Note that

Definition 3 asserts that the final output of a predictor Ŷ , given some input X, remains

the same no matter the intervention value of A. But now, suppose that we have access

to the internal activations of predictor Ŷ , we have a causal abstraction between Ŷ and

the high-level causal variable A. More formally, let ML =: Y . Let MH be a structural

causal model with input X, high-level causal variable A, and output variable Y , where

FY (U) =: Ŷ (U) (i.e.,MH mimics the behavior of the predictor Ŷ ). Now, suppose that we

have an alignment Π which satisfies Equation 3.1 with respect to all base and source pairs.

That is, we have a complete causal abstraction of the effect of A on Ŷ .

We claim that any intervention on A in the computation pathway of Ŷ results in a

model which satisfies counterfactual fairness. Consider the intervened-upon modelML∗ =:

MLΠ(A)←Π(a) for some value a. Since we have removed the causal pathway from the input

to the computation of A inML∗, the input value of A no longer affects the output ofML∗.

Hence,ML∗ satisfies Definition 3 with respect to A.

Therefore, we conclude with a theoretical connection between interpretability, in the

form of causal abstraction, and algorithmic fairness, in the form of counterfactual fairness.

A completely causally interpretable predictor is also a counterfactually fair predictor: all

that is required is a fixed intervention on the high-level abstraction of the sensitive attribute

which we would like to protect.

3.4.2 Example Counterfactual Fairness

Let us return one last time to our biased, but now interpretable fact-checking language

model. How could we debias our model with respect to the confidence level of its inputs?

As we’ve seen in the previous subsection, by intervening on Π(B) (i.e., the range of neural

activations corresponding to the high-level concept of confidence level), we can predictably

influence our model’s output and “override” the confidence level specified in the input. What

if we were to use the same intervention, then, no matter the input? The key idea in this

thesis is that, by intervening on the computation of the high-level concept of confidence so
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Figure 3.3: Example intervention on our low-level language model, visualized by a gray
rectangle, and the aligned intervention on the high-level causal model from Figure 3.1.

that it remains exactly the same no matter the input, we can guarantee that the confidence

level of the input has no causal effect on our model’s output. That is, by setting a fixed

intervention, we construct a low-level language model that is agnostic to its input’s degree

of confidence.

For our example, we can come up with a vector with 12 entries, say b = (1, 2, ..., 12), and

construct an updated language modelML∗ =MLΠ(B)←b as illustrated in Figure 3.3. In our

new language model, every input is computed identically to how it would be computed by

the original language modelML, but the activation of the high-level concept of confidence

is replaced by our fixed b vector. In our simplified diagram, we do not have a sense as

to whether b represents “confidence” or “lack of confidence” (i.e., whether Π(b) = T or

Π(b) = F ). However, for the sake of counterfactual fairness, the effect of b on the behavior

of our model is not important, because it is independent of the input. Consider an arbitrary

counterfactual pair of inputs b and s, where s differs from b only in its degree of confidence.

We now have a guarantee that, with our updated language model,ML∗(b) =ML∗(s). The

value ofML∗(b) might not be aligned with whether b is truly factual, but it is no longer by

whether b is confidently stated. Hence, we have an interpretable and fair language model,

thanks to the concept of causal abstractions!

Finally, we note that although counterfactual fairness specifies that the behavior of a

predictor should be identical on counterfactual input, counterfactual fairness does not specify

what this behavior should be. Hence, any intervention that we choose on our high-level

variable will achieve counterfactual fairness. This prompts the question, which intervention

should we choose? In Section 5 we revisit this question and explore methods for designing

interventions while maintaining the original capabilities of our biased language model.

We are now ready to explore methods which achieve causal abstraction and counterfactual
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fairness on language models. In Section 4, we introduce a method for debiasing multi-modal

models with respect to the purpose of a text. In Section 5, we introduce a method for

debiasing instruction-following language models with respect to gender pronouns.



4. Inducing Causal Effect: Accessible Image

Descriptions

Recently developed multi-modal models have the potential to improve internet accessibility

for blind or low-vision (BLV) individuals by providing alt-descriptions for images. However,

these multi-modal models are trained on data that does not distinguish the purpose of a

text [33]. In particular, these models fail to distinguish between a caption that is meant to

complement an image and a description that is meant to replace an image for the purpose

of accessibility. See Figure 4.1 for the contrast between an example image description

and image caption [33]. In this section, we address this form of bias through Interchange

Intervention Training (IIT), a method for inducing causal abstraction, without comprising

the capabilities of the original multi-modal models. Our analysis focuses on CLIP [48], a

state-of-the-art model for computing image-to-text similarity.

4.1 Image Descriptions with a Purpose

Multi-modal models constitute a promising tool for image description generation. However,

these models are not sensitive to the communicative purpose behind a piece of text, which is

critical for producing accessible alt-descriptions of images [32, 33]. In this thesis, we adapt

a referenceless metric, CLIP, to distinguish the purpose behind a text, which improves its

Figure 4.1: From Concadia [33], an example of an image with two associated texts: the
description as provided in the image’s alt text, and the caption as displayed below the image
in the article. For captions, the image content is presupposed whereas descriptions aim to
stand in for the image.

27
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suitability for the evaluation of image description models.

In order to evaluate image description generation, researchers face the trade-off between

using human evaluations, which can be time-consuming and difficult to obtain, and automated

evaluations (e.g. CLIPScore, CIDEr) which are not sensitive to context nor the specific task

at hand. Indeed, [32] evaluate the correlation between CLIPScore and human evaluations of

image alt-descriptions, finding that CLIPScore neither correlates with the evaluations of

sighted evaluators nor with those of BLV evaluators. Despite achieving high performance

accuracy on a plethora of image-text alignment tasks, CLIP is as of yet unsuitable for

assessing alt-text generation models.

One reason for the poor performance of CLIP on image description evaluation is that its

training data and objective do distinguish between image descriptions and image captions,

which [33] assert is critical in practice. In order to motivate this distinction, the authors

release Concadia, a dataset consisting of 96,918 images with corresponding descriptions,

captions, and surrounding context. In our work, we treat description-caption pairs as

counterfactual pairs, whose entities are identical (i.e., describing the same image) except

for their communicative purpose – captions are meant to supplement the image, whereas

descriptions are meant to replace it entirely.

4.2 Interchange Intervention Training

Interchange intervention training (IIT) is a finetuning paradigm that localizes high-level

causal variables within a neural network’s intermediate representations in order to induce

a causal abstraction relationship between the neural network and a predefined structural

causal model. In our setting, we utilize IIT to induce a causal effect between the purpose

behind a text (i.e., describing versus captioning) and the outputted similarity score.

4.2.1 Our Structural Causal Model

To finetune CLIP with IIT, we first need to define a structural causal model that CLIP

should adhere to. Rather than provide a full structural causal modelM = (V, PA, Val, F ),

which requires structural equations F , we provide a partial causal model as shown in Figure

4.2.

Formally, suppose that we have an image we wish to describe. Then our high-level causal

structureMH consists of four causal variables: X, which represents our input text, and
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Figure 4.2: High-level causal model for the purposes of debiasing a language model with
respect to the communicative purpose of a text. An example computation is provided below
the high-level causal variables.

whose value can be any natural language sentence; R, which represents the relevance of the

text to the image, and can take on any real value; P , which represents the communicative

purpose of the text, and whose value can be one of desc. or capt.; and Y , which represents

the similarity between the input text and our image. Crucially, we do not explicitly define the

causal effect of the text’s purpose, P , on the final similarity score, Y . Rather, we only define

the direction of the causal effect: if we have a counterfactual pair of inputs XP←desc. and

XP←capt. that only differ in their communicative purpose, then FY (XP←desc.) > XP←capt..

That is, our high-level structural causal model behaves identically to CLIP, but consistently

prefers texts whose underlying purpose is to replace the image over texts whose underlying

purpose it to supplement it with additional context.

In Section 3.3, we assumed knowledge of an alignment between our high-level causal

structure and the low-level model we seek to debias, such that the high-level model is a causal

abstraction of the low-level model. However, since we do not expect CLIP to be abstracted

by our ideal high-level causal structure (i.e., CLIP is not sensitive to the communicative

purpose of a text input), we do not expect to find such an alignment. Rather, we modify

interchange intervention training (IIT), which induces a causal abstraction relationship

given a pre-determined alignment.

4.2.2 Contrastive IIT

Given access to a dataset D with counterfactual pairs, a low-level neural network N θ, a

high-level causal modelMH, and a predetermined alignment between the two models Π, the

IIT method induces a causal abstraction relationship between the structural causal models

with respect to the alignment. The key idea is that IIT finetunes the neural network with
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(a) Given: an image, description, and caption
triplet.

(b) First, run a forward pass of the CLIP
image encoder in order to compute a static
image representation.

(c) Next, run a forward pass of the CLIP text
encoder with the base input.

(d) Now, perform an interchange interven-
tion between the base and the counterfac-
tual source text input, according to our pre-
specified alignment.

(e) Lastly, compute the contrastive learning
objective loss as in Equation 4.2.

Figure 4.3: Example forward pass of interchange intervention training (IIT) [19], adapted
to the setting of CLIP. Backpropagating through the computed CLIP objective will induce
the causal structure visualized in Figure 4.2.

the interchange intervention objective

∑
b,s∈D

Loss(INTINV(MH,b, s, V ), INTINV(N θ,b, s, Π(V ))). (4.1)

which optimizes the interchange intervention accuracy with respect to some loss function,

such as cross entropy. Should the IIT objective be fully met, thenMH,N θ, and Π satisfy

the causal abstraction relationship as in Equation 3.1.

In our setting, we do not have a value for INTINV(MH,b, s, V ) as in Equation 4.1, since

we do not have an explicit definition of Y in our high-level causal graph. Hence, we modify

the IIT objective to a semi-supervised, contrastive learning setting as in the original CLIP

training paradigm [48].

Our partial causal model does not provide a deterministic function that computes the

effect of P on Y . Nevertheless, it does encode direction: in the case that X is a text input
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with P = capt., then the counterfactual XP←desc. should have a higher similarity score for

the same image. Conversely, a counterfactual caption text should receive a lower similarity

score for an image than its original text description for the same image. This contrast

allows us to set up IIT within a contrastive learning framework, as shown in Figure 4.3. We

contrast between CLIP run on the base text input, and CLIP run on the same input but

with an interchange intervention with a counterfactual P (i.e. description → caption, or

vice versa). Our training objective function can be defined as

∑
b,s,I∈Vin

CE(IT
[
N θ(b), INTINV(N θ,b, s, V )

]
, l) (4.2)

where N θ is the CLIP text encoding model, initialized with pretrained CLIP weights, I is a

static image encoding, computed by the CLIP image encoder (kept frozen during training),

and l is a label with l = 0 if b is a description and l = 1 if b is a caption.

With our modified IIT objective function, we induce a high-level causal structure where

the underlying purpose of a text (i.e., caption versus description) has a causal effect on the

similarity of the text to the image. In our experiments, we evaluate whether our IIT-CLIP

model is sensitive to the communicative purpose of a text, and whether it is otherwise

comparable to the original CLIP model.

4.3 Experiment Details

We compare our IIT-CLIP model to the pretrained CLIP model, which achieves strong

performance in a variety of image captioning and description tasks. We also compare

IIT training to finetuning CLIP with the objective of preferring text descriptions over

captions when describing the same image. We evaluate the models on the following tasks,

increasing in ambition: (1) ability to distinguish between captions and descriptions in the

held-out Concadia test set, (2) correlation of similarity scores to human evaluations of image

descriptions, and (3) performance on a zero-shot image classification dataset from a new

domain.

The first evaluation serves as a sanity check, ensuring that our trained models are able

to distinguish the high-level concept of a text’s underlying purpose. The second evaluation

follows the hypothesis of [33] that distinguishing descriptions and captions is critical in

creating human-centered image descriptions. The third evaluation ensures that the power of
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CLIP to match images and texts across various domains is not significantly reduced by the

training method. A model that sufficiently passes all three evaluations is likely to serve as a

useful model for image description generation.

4.3.1 Description-Caption Distinction

We use the test set of Concadia to evaluate whether CLIP distinguishes between captions

and descriptions. Across all (image, caption, description) triples in the held-out test set, we

compute the rate at which the CLIP score for the (image, description) pair is higher than

the CLIP score for the (image, caption) pair. Since we are fitting the CLIP model for the

task of evaluating image alt-description generation models, a higher rate of descriptions over

captions is preferred.

4.3.2 Correlation to Human Evaluation

We follow the work of [32] to evaluate the correlation between CLIP scores and human

evaluations of text descriptions for images. We obtain CLIP scores for 70 image-text pairs

extracted from Wikipedia, and compute their correlation with human evaluations, both

sighted and BLV individuals, for these same image-text pairs [32]. We hypothesize that a

model which better distinguishes between descriptions and captions will also align better

with human judgement.

4.3.3 Domain Transfer

Lastly, we seek to ensure that a finetuned CLIP model does not compromise CLIP’s

strong performance on cross-domain transfer. This is important for the sake of description

generation across varying distributions of images. We evaluate domain transfer by computing

the model’s accuracy on CIFAR-100, a zero-shot image classification task with 100 image

classes [34]. For a given image, we predict its class by choosing the text description of highest

CLIP similarity score to the image, in the form of “An image of <class>”. Our goal is to find

a training paradigm which balances the trade-off between channeling CLIP to distinguish

between descriptions and captions while maintaining CLIP’s zero-shot capabilities in a

previously unseen image domain.

The use of causal abstraction towards accessible image descriptions can be viewed as a

form of addressing bias with respect to real-world principles: although multi-modal models
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Model Desc. > Capt. Accuracy
CLIP 49.4% 61.4%
+ IIT 84.3% 46.3%
+ finetuned 89.0% 40.9%

Table 4.1: Results table for description vs. caption preference, and transfer to CIFAR-100.
Desc. > Capt. reports the rate at which, for a description-caption pair describing the
same image, the model assigns a higher similarity score to the description-image pair than
the caption-image pair. Accuracy reports accuracy on the CIFAR-100 dataset, where a
random classifier has an expected accuracy of 1 %.

such as CLIP do not distinguish the purpose of a text, we as humans hypothesize that

this distinction is critical for providing accessible image descriptions. By inducing a causal

abstraction relationship between CLIP and our high-level causal model, we (1) produce an in-

terpretable model whose computation with respect to text purpose is human-understandable,

and (2) align the model’s high-level computation path with human understanding of the

world. Hence, inducing causal abstractions forms a connection between interpreting language

models and addressing their biases. In the next section, we investigate the case when a

language model aligns with an undesired causal structure, and how to reduce the causal

effect of its intermediate variable.

4.4 Results

Table 4.1 reports the results of (1) a multi-modal model’s ability to distinguish between

captions and descriptions within the Concadia held-out test set [33]; and (2) a multi-

modal model’s ability to perform zero-shot image classification. A higher Desc. > Capt.

percentage means that the model prefers description texts over caption texts within a

counterfactual pair of texts that describe the same image – hence aligning with human

understanding of a text’s communicative purpose in an image description task. A higher

Accuracy means that the model achieves high description accuracy in a separate image

domain – hence preserving the original capabilities of CLIP.

As previously shown by Kreiss et al. [33], CLIP does not distinguish between descriptions

and captions, preferring descriptions to their counterfactual captions 49.4% of the time.

Hence, we wish modify CLIP to instill this description-caption distinction, while preserving

its original image-to-text capabilities. We acknowledge that finetuning CLIP is just as, if not

more, effective than interchange intervention training in terms of instilling the distinction
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Overall Imaginability Relevance Irrelevance

BLV
CLIP 0.08 0.10 0.09 0.09
+finetuned 0.22 0.22 0.24 0.17
+IIT 0.11 0.26∗ 0.29∗ 0.26∗

Sighted, no
image

CLIP -0.01 0.06 0.00 -0.17
+finetuned 0.14 0.11 0.13 -0.04
+IIT 0.25∗ 0.24∗ 0.21 0.05

Sighted,
with image

CLIP 0.14 0.11 -0.08
+finetuned 0.09 0.09 0.06
+IIT 0.30∗ 0.26∗ 0.18

Table 4.2: Correlation between model similarity scores and human preference, across
imaginability, relevance, irrelevance, and overall value of text description [32]. Scores
reported with an asterisk (∗) are statistically significant with p < 0.05.

between descriptions and captions within CLIP (89.0% by finetuning vs. 84.3% by IIT).

Nevertheless, IIT is more robust to task transfer than finetuning (40.9% by finetuning vs.

46.3% by IIT), and hence preserving the original image-to-text performance of CLIP across

different image domains.

This is potentially because unlike the finetuning objective, which trains a model to

prefer descriptions over captions with respect to the Concadia dataset, the IIT objective

explicitly localizes the high-level concept of communicative purpose. Hence, finetuning is

more prone to overfit on the training image distribution, whereas IIT aligns CLIP with

a more robust interpretable causal structure. We posit that the balance struck by IIT

between debiasing CLIP and maintaining its original task performance is most useful for

alt-description generation tasks.

The correlation between model outputs and human preference, reported in Table 4.2,

further supports our hypothesis that IIT aligns CLIP with human understanding of alt-

descriptions and their purpose. CLIP trained with IIT is the only model to achieve

statistically significant correlation with human preference. Interestingly, only in the overall

score for BLV participants does finetuning achieve a higher correlation than IIT (0.22

by finetuning vs. 0.11 by IIT). Yet on all other metrics rated by BLV participants (i.e.,

imaginability, relevance, and irrelevance), IIT not only outperforms finetuning, but also

achieves statistically significant correlation. We posit that since IIT distinguishes the

communicative purpose of the text, it is better at capturing the relevant details of an image,

without adding in details that are only present in the context. Hence, although the overall

valuation of BLV individuals more strongly correlates with finetuned CLIP than IIT-CLIP,
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the valuation of IIT-CLIP is more grounded in the visual details of the image. The strong

correlation between IIT-CLIP and the relevance score by sighted participants who were

given access to the image, in stark contrast to the finetuned relevance score, supports this

hypothesis (0.26 by IIT versus 0.09 by finetuning).





5. Reducing Causal Effect: Debiasing Language

Models

As language models improve in understanding and replicating the nuanced structure of

natural language, they also risk amplifying and perpetuating the bias of its speakers. In this

section, adapting the technique of causal abstraction, we introduce a light-weight model

editing method for achieving counterfactual fairness with respect to a sensitive attribute.

We demonstrate our debiasing method in a supervised setting (i.e., sentiment analysis) and

an unsupervised setting (i.e., text completion) with respect to gender. In both settings,

our method reduces bias while maintaining the model’s original capabilities, outperforming

a recently developed causal intervention method as well as a commonly-used debiasing

technique.

5.1 Gender Bias Evaluation for Language Models

Although gender bias in language models is ubiquitous and well-documented, there is no

centralized resource towards evaluating models for gender bias and mitigating its effects

[56] (see Section 2.1 for more detail). In this thesis, we investigate and attempt to mitigate

gender bias in a supervised sentiment analysis setting, and an unsupervised text generation

setting. We limit our definition and evaluation of gender bias to the Equity Evaluation

Corpus (EEC) [29] and the Professions datasets [59, 38, 4].

The EEC dataset consists of gender-swapped sentence pairs, such as “The man is happy”

and “The woman is happy.” By evaluating the difference of a language model’s output on

these sentence pairs, we can estimate the counterfactual behavior of a model should the

gender of the sentence subject be swapped. We utilize the EEC dataset to evaluate and

mitigate bias across gendered subject noun phrases in language models.

The Professions dataset consists of incomplete clauses as prompts for a generative

language model, such as “The doctor said that” and “The nurse said that.” We note that

such sentences do not in themselves constitute a counterfactual pair – the doctor and nurse

professions differ by more than just their stereotypically associated gender. Nevertheless,

37
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with enough imprecise pairs such as “The doctor said that” and “The dancer said that”, we

hypothesize that the profession information will be averaged out, and the key distinction

will be the stereotypically associated gender. This perspective bears similarity to the meta-

sampling approach in [61], which interprets sentiment analysis language models trained on

restaurant reviews.

We acknowledge that our debiasing experiments are limited by the definition and

evaluation of gender bias supported by our choice of datasets. For example, the EEC

dataset simplifies gender to a binary variable (e.g., “he” vs. “she”, “man” vs. “woman”).

Additionally, gender may be implicitly encoded within natural language without an explicit

gendered noun phrase. Likewise, by evaluating the probability of a pronoun token in

describing the profession noun in the sentence, the Professions dataset does not support a

spectrum of gender identities. Our experiments with the Professions dataset are restricted

to the male pronoun “he”, female pronoun “she”, and gender neutral pronoun “they”. We do

not expect our debiased method to generalize to the full continuum of gender identities nor

the full extent to which gender underlies social interactions. However, we believe that given

increasingly inclusive and detailed dataset, our method has the potential to decreasingly

biased language models. We provide a thorough analysis of our method’s limitations in

Section 6.

5.2 Distributed Alignment Search

Whereas in Section 4 we induce a causal effect between the high-level concept of commu-

nicative purpose and a multi-modal model’s behavior, here we seek to reduce the causal

effect between the high-level concept of gender and a language model’s behavior. Hence,

rather than predefine an alignment and induce a desired causal abstraction, we search for

an alignment that surfaces an undesired causal abstraction. We find this alignment using

distributed alignment search (DAS), a recently developed method for uncovering causal

abstractions [20]. Then, we introduce a method for intervening on a low-level language

model so as to reduce the undesired causal effect of a high-level causal variable, and approach

counterfactual fairness.
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Figure 5.1: High-level causal model for the purposes of debiasing a sentiment analysis
language model with respect to the high-level concept of gender.

5.2.1 Our Structural Causal Model

Suppose that we are given a language model biased with respect to gender, as defined by

either the EEC or Professions datasets. How can we evaluate and surface the bias of our

model? In our method, we begin by seeking to interpret our language model. We do so

via hypothesizing an undesired causal structure – one where the gender of the main noun

phrase has a causal effect on the model’s output – and determining whether it is an accurate

causal abstraction of our biased language model.

Let us focus on the supervised sentiment analysis setting. Our high-level casual model

MH consists of four causal variables: X, which represents an input sentence, and whose

value can be any natural language sentence; S, which represents the level of joy in the

input sentence, and whose value can be any real number; G, which represents the gender

of the subject of the input sentence, and whose value can be either M or F ; and Y , which

represents the output of our language model, and whose output can be any real number. This

high-level causal model is visualized in Figure 5.1. Finally, let N be the frozen parameters

of the language model we would like to debias. We explicitly define the value of Y in our

high-level causal model as FY = N (X). That is, the output of our high-level causal model

reflects the original bias of our low-level language model.

We note thatMH reflects the gender bias we would like to remove. Nevertheless, we

seek to find an alignment Π that reflects a causal abstraction relationship betweenMH and

N . Why should we want to guarantee a causal abstraction between a language model and

our undesired high-level causal model? Our insight is that a causal abstraction between

MH and N , should it exist, would serve two purposes: (1) we can interpret the bias of our

language model with respect to the high-level causal modelMH, and (2) we can construct

interventions with respect to this causal abstraction that will reduce the undesired causal
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effect between gender and the language model’s output. We provide a brief outline of the

DAS algorithm, which we use to find an alignment that asserts this causal abstraction,

before discussing our intervention method for debiasing our language model.

5.2.2 Distributed Alignment Search (DAS)

The DAS method is a lightweight method for finding a causal alignment without modifying

the original parameters of a neural network [20]. Given a predetermined activation layer

within a neural network, DAS learns an invertible orthogonal projection (i.e., rotation

matrix) from the neural activations of that layer to a latent “high-level concept” space.

Given a counterfactual pair of inputs, DAS computes the orthogonal projection of the two

hidden activation layers, performs an interchange intervention within the “high-level concept”

space, and then inverses the orthogonal projection back to the original activation space.

The rotation matrix is optimized to meet the interchange intervention training objective, as

in Equation 4.1. By using a projection matrix, DAS can uncover latent causal concepts that

may be encoded within a different basis [20]. By enforcing an orthogonal projection, DAS

maintains the property of associativity between high-level concepts, which is essential for

causal abstraction [18].

We apply DAS to find an alignment between our high-level causal structureMH and

biased language model N , and we evaluate our alignment using interchange intervention

accuracy. Yet unlike in Section 4, a causal abstraction does not imply a debiased model –

in fact, it simply reasserts that our existing model is biased. How can we intervene on our

language model in order to remove the causal effect of gender on its output?

5.3 Intervention for Causal Abstraction

Let us revisit our example biased fact-checking model one last time. In Section 3.4, we

saw that given an alignment Π between our high-level causal modelMH and the biased

language modelML that satisifes the causal abstraction relationship Equation 3.1, we can

intervene on our low-level model ML in order to debias it with respect to the degree of

confidence of its input sentence. We did this by choosing an arbitrary vector that fit the

size of our alignment, and intervening on the computation ofML using that vector and our

alignment Π. We apply the same idea to mitigate gender bias in language models.
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We saw that, when the causal abstraction is consistent across all inputs, it is enough

to choose any intervention vector in order to achieve counterfactual fairness. However, in

practice, the interchange intervention accuracy is less than one-hundred percent. This means

that our intervention vector serves two purposes: (1) reduce the causal effect of the high-level

concept of gender as much as possible, and (2) maintain the original performance of the

biased language model in all other contexts. In this thesis, we explore methods for fixing an

intervention vector, as well as learning an intervention vector to satisfy our constraints.

5.3.1 Fixing an Intervention

One idea is that our intervention vector should “null out” the high-level concept of gender

within the language model’s computation. To implement this, we can construct a vector

vnull = ~0, which replaces each neural activation that correspond to the high-level causal

variable G with zero. Though this intervention is likely to reduce the effect of the causal

variable G on the resulting language model, it might compromise the original model’s

capabilities.

Another idea is that our intervention vector should capture the “average” of our high-level

concept of gender, as encoded within the language model’s computation [61]. We visualize

this approach in Figure 5.2. First, we compute the neural activations of our language model

N when run on sentences with male noun phrases. We use our learned alignment Π to

extract the activations that correspond to the high-level variable G in our causal graph

MH. Similarly, we compute the neural activations when run on sentences with female noun

phrases, and extract the values that correspond to the high-level variable G. By averaging

our male-sentence activations vM , we have a single averaged “male” vector that abstracts

the high-level concept of G = M ; correspondingly, we can compute an averaged vector vF

for the high-level concept G = F . By intervening on our model with the averaged male

intervention, NΠ(G)←vM
, we can expect to answer the question, “what would the output of

the model have been, if the main noun phrase of the sentence was male?” Yet what if we

were to intervene on the model with an averaged vavg = (vM +vF )/2 vector representation?

This thesis hypothesizes that such a fixed vector strikes a balance between reducing the

effect of gender on a language model’s output while maintaining its performance in other

contexts.



42CHAPTER 5. REDUCING CAUSAL EFFECT: DEBIASING LANGUAGE MODELS

(a) Constructing an average intervention. By extracting the neural activations of a language model
at the site aligned to the high-level concept of gender, we can hope to capture a “prototype” gender
intervention. The outputted intervention vector in blue is an averaged G←M intervention, while
the vector in red is an averaged G← F intervention.

(b) By intervening on our low-level language model with an averaged intervention (here, an average
of the G ← M and G ← F vector), we hope to remove the causal effect between the language
model’s low-level implementation of G and its final output.

Figure 5.2: Example fixed intervention computed as an average of a G←M “prototype”
intervention and the corresponding G← F intervention. We hope that this process removes
the causal connection between G, the high-level concept of gender, and Y , the output of our
low-level language model.

5.3.2 Learning an Intervention

Our thesis also considers learning an intervention vector. To learn an intervention vector,

we can redefine our causal structure by setting FY = S, meaning that Y no longer causally

depends on G (i.e., removing the dashed red arrow in Figure 5.1). We can compute S as the

average sentiment score assigned by the model between a male and female counterfactual

pair (e.g., the average sentiment of “He is happy” and “She is happy”). Now, the interchange

intervention training objective, Equation 4.1, ensures that our learned intervention vector vθ

does not stray away from the original model predictions. Since we learn a fixed intervention

vector across all inputs, we still guarantee counterfactual fairness as in Definition 3.

By defining some intervention v and intervening on a biased language model N , we

produce a language model NΠ(G)←v that is both interpretable with respect to causal abstrac-

tion and fair with respect to counterfactual fairness. Through investigating and mitigating

gender bias in language models, we demonstrate the connection between interpretability
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and fairness in practice.

5.4 Experiment Details

We evaluate our intervention for causal abstraction method in two settings: a supervised

sentiment analysis setting, and an unsupervised text generation setting.

5.4.1 Supervised Setting: Bias in Sentiment Analysis

We investigate gender bias in a pretrained BERT model [12], finetuned on a sentiment

analysis benchmark, SemEval 2018 [42]. The finetuned BERT model places within the top

ten models, out of more than two hundred submissions, on the SemEval 2018 benchmark.

Nevertheless, as measured by the Equity Evaluation Corpus (EEC) [29], BERT demonstrates

significant gender bias in its outputted sentiment score.

We construct a high-level causal structure to audit BERT for gender bias, and confirm a

causal abstraction using the counterfactual data from the Equity Evaluation Corpus (EEC).

Utilizing the alignment between BERT and our posited high-level causal structure, we

develop intervention vectors to reduce the causal effect of gender on the predicted sentiment

score.

We compare our technique to iterative nullspace projection (INLP) [50], as well as to

the original model. We report (1) gender bias, as measured by EEC, and (2) score on the

original SemEval task. That is, we seek to measure the trade-off between (1) achieving

counterfactual fairness and (2) maintaining strong performance on the supervised sentiment

analysis task.

5.4.2 Unsupervised Setting: Bias in Natural Language Generation

We evaluate gender bias in a pretrained GPT-2 model [49]. As demonstrated by the

Professions bias evaluation dataset, GPT-2 reflects bias in associations between professions

and gender stereotypes [59]. Utilizing DAS and intervention selection, we attempt to mitigate

gender bias in GPT-2 with respect to the pronoun associated with a given profession.

We compare our technique to Rank-One Model Editing (ROME) [40], a causal editing

method based on interpretability through causal tracing [59]. We report (1) gender bias,

as measured by the total effect of a profession’s gender stereotype on the pronoun used
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Model Bias (% M > F) Bias (M - F) Accuracy
BERT 90.4% 3.82 0.692
+ INLP 58.5% 0.82 0.280
+ Intervention (M) 68.8% 0.76 0.647
+ Intervention (F) 83.9% 1.42 0.644
+ Intervention (Null) 66.4% 0.89 0.658
+ Intervention (Avg.) 75.1% 1.10 0.646

Table 5.1: Results EEC dataset (supervised setting). Bias is measured as the percentage
rate of preferring a certain gender to another within a counterfactual pair (% M > F),
and the average absolute difference in model outputs (M - F), as measured by EEC [29].
Accuracy is reported as a correlation score between the model outputs and human labels on
the SemEval 2018 held-out test set [42].

by GPT-2 on the Professions dataset; (2) natural language understanding, as measured

by the GLUE score [60]; and (3) the rate of correspondence between the pronoun and the

profession in the model-generated sentence, hand-labeled across 30 example sentences. That

is, we seek to measure the trade-off between (1) achieving counterfactual fairness and (2)

maintaining the capabilities of the original GPT-2 model. However, we believe that the

total effect of a profession’s gender stereotype on the generated pronoun is an insufficient

metric for bias. Often, a model might output the anti-stereotypical pronoun, but to index a

different entity (e.g., “the doctori said that shej will heal soon”). Hence, we measure (3)

the “depth” of the underlying gender bias in GPT-2.

5.5 Results

5.5.1 Supervised Setting: Bias in Sentiment Analysis

Table 5.1 presents results for our experiment in debiasing a pretrained BERT model [12]

that is finetuned on the SemEval 2018 sentiment analysis training set [42]. We find that our

method significantly reduces bias, without compromising the original model’s performance.

However, we also note that not all fixed interventions operate identically, and recommend

future research on intervention generation.

Our debiasing setting assumes access to (1) a pretrained BERT model, finetuned on

a sentiment analysis task, and (2) the EEC dataset, with respect to which we would like

to debias BERT. Note that we do not assume access to the original SemEval training set.

This is because in most settings, off-the-shelf models do not have readily accessible training

data, and re-training language models can be computationally expensive. Nevertheless,
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we measure both (1) the bias of our outputted model, with respect to EEC, and (2) the

performance of our model, with respect to the held-out SemEval test set. Hence, our setting

encourages finding a lightweight model debiasing technique that preserves the original

model’s capabilities without reiterating on their original training process.

We find that a BERT model, finetuned on a sentiment analysis task, scores 0.692 out

of 1.00 on the SemEval benchmark, placing within the top 10 models evaluated on this

benchmark. Yet BERT displays statistically significant bias by assigning higher joy sentiment

scores to sentences with a male noun phrase over the counterfactual sentences with a female

noun phrase 90.4% of the time. We confirm this bias using DAS. We find an alignment

between BERT and our hypothesized biased causal model with an interchange intervention

accuracy of 87.7%, suggesting that in almost all inputs, the gender of the main noun phrase

is computed by BERT and plays a causal role in its output.

Our method successfully debiases BERT without completely compromising its original

performance on this task. In particular, our null intervention (an all-zeros vector) is unbiased

with respect to gender as measured by EEC, assigning higher scores to male inputs 66.4%

of the time and achieving an average difference of 0.89. Furthermore, the null-intervention

model scores 0.658 on the SemEval task, placing within the top 20 models (out of more

than 200 models) evaluated on this task. Hence, our experiment confirms the potential of

the interpret-and-intervene method towards causally debiasing language models.

Interestingly, we find that not all interventions have the same consequences. For example,

although an averaged M intervention achieves low bias (68.8% male-over-female preference),

the average F intervention results in a model that is still quite biased (83.9% male-over-

female preference). This is likely because our alignment does not guarantee as a perfect

causal abstraction relationship. Rather, Equation 3.1 holds for 87.7% of counterfactual

input pairs from EEC. We hypothesize that our averaged female intervention falls into the

distribution of inputs where Equation 3.1 no longer holds. To address this in future research,

we encourage work on searching for alignments with high interchange intervention accuracy,

as well as work on selecting the most appropriate intervention based on a given alignment.

5.5.2 Unsupervised Setting: Bias in Natural Language Generation

Table 5.2 presents results for our experiment in debiasing a natural language generation

GPT-2 model. We compare our intervention method to ROME [40], a method for locating



46CHAPTER 5. REDUCING CAUSAL EFFECT: DEBIASING LANGUAGE MODELS

Model Surface Bias Perplexity Underlying Bias
GPT-2 244.4 15.69 0.47
+ ROME 34.6 14.82 0.60
+ Intervention (M) 8.7 14.80 0.93
+ Intervention (F) 16.5 14.80 0.93
+ Intervention (Null) 8.3 14.80 0.90
+ Intervention (Avg.) 12.8 14.80 0.90

Table 5.2: Results for the Professions dataset (unsupervised setting). Surface bias is
measured as the total effect between the associated stereotype of a profession and the
respective probabilities of generating “he” versus “she” pronouns [59]. Perplexity is measured
on the held-out Wikitext dataset [41]. Underlying bias is the rate at which the pronoun
generated by the underlying model coreferences the profession in the original prompt.

and editing factual associations within language models.

We employ DAS to search for an alignment between GPT-2 and a partial high-level

causal model that is biased with respect to gender, as in Figure 5.1. We find an alignment

that achieves an interchange intervention accuracy of 0.76, suggesting that GPT-2 can be

largely abstracted by this biased causal model. Hence, we expect that intervening on the

aligned high-level concept of gender, as in Figure 5.2b, will remove the causal effect of gender

on the model-generated text.

Indeed, we find that our intervention approach significantly reduces the total effect of

gender on GPT-2 output, as measured by [59]. Our method achieves a lower total effect

than the ROME method [40] (8.7 versus 34.6, respectively). One reason for this is that

ROME induces factual associations in the form of “profession” → “gender pronoun” (e.g.,

“doctor” → “she”), whereas our method abstracts the high-level concept of gender across all

professions. This means that our method better generalizes to new professions and their

associated stereotypes.

Our results confirm that our method reduces gender bias in GPT-2 without compromising

its original performance in text generation. Our debiasing method achieves a perplexity

score on the held-out Wikitext 2 dataset [41] that is comparable to the perplexity score

of GPT-2 (14.80 versus 15.69, respectively), meaning that our debiased model generates

fluent text. Although we require more experiments to confirm this, we hypothesize that

our debiased model can replace the original GPT-2 model in the original natural language

generation settings of GPT-2.

Our results demonstrate that our method (1) reduces the original gender stereotype

bias of GPT-2 on the Professions dataset, and also (2) achieves comparable performance to
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GPT-2 in natural language generation. Nevertheless, we emphasize that our model does not

constitute a debiased version of GPT-2. As elaborated upon in Section 6, the Professions

dataset measures a single and somewhat limited dimension of gender bias. We do not expect

our method to generalizes to dimensions of gender bias outside of equalizing the rate of

pronouns that are generated following a particular profession within a sentence.

We evaluate one dimension of bias, which we term “underlying bias” in Table 5.2, on a

random sample of 30 templates from the Professions dataset. On a given generated text

output, we manually decide whether the pronoun in the generated sentence coreferences

the profession in the template, or an external noun entity. For example, consider the

sentence “The doctor said that she will recover quickly.” Although the sentence uses the

antistereotypical pronoun “she”, this pronoun refers to the patient, and not the doctor. Our

surface bias evaluation does not capture this nuance, and so we report it manually as an

underlying bias. We find that our method, despite reducing surface bias, does not remove

the underlying bias in GPT-2 (underlying bias rate of 0.90). We encourage future work on

bias evaluation methods for deeper underlying bias in language models. We believe that, as

bias evaluation methods increase in complexity and nuance, so too will our method result in

more deeply debiased models.





6. Limitations

Our work proposes a connection between interpretability and algorithmic fairness, and

demonstrates the potential of this connection in debiasing language models. However, we

emphasize that our experiments are, for the moment, purely for demonstration purposes.

Here we elaborate on the current limitations of our experiments, and point out points of

caution for research that seeks to apply our debiasing technique.

Our experiments are limited by access to bias evaluation datasets and mechanisms. For

example, our gender debiasing experiments apply a binary definition of gender, which by itself

perpetuates harmful gender bias in the form of underrepresentation of non-binary gender

definitions [56, 64]. This is because our bias evaluation methods, EEC and the Professions

dataset, are restricted to a binary definition of gender. Additionally, our unsupervised

debiasing setting focuses on the pronoun generated by a language model, but does not

consider the overall sentiment, implication, or quality of the outputted sentence with respect

to that pronoun.

For example, we evaluate our models on the prompt “The doctor was promoted because...”,

expecting debiased models to output “she” and “he” at an equal rate. Our GPT-2 model

modified by ROME completes the sentence as follows: “The doctor was promoted because

she had a baby,’ said a neighbor who did not want to be named.” Although the model uses

the antistereotypical pronoun “she” to refer to the doctor, the outputted sentence encodes

deep gender bias and perpetuates a denigrating concept of female professionals [10]. Our

simplified bias evaluation system does not capture this deep and nuanced gender bias. As

language models increase in their depth of language understanding, we must develop richer

bias evaluations that surface deep underlying bias. We believe that, given richer evaluation

metrics, our method can remove deeper levels of bias in existing language models.

We also acknowledge a key ontological problem in causal reasoning with respect to

protected attributes, which applies directly to our debiasing method. In particular, in

designing a high-level causal model, we must ask “What do its variables mean?” Recent

literature on causal reasoning points out that the meanings of social constructs such as gender,

race, or religion might not ever be fully captured by a single causal variable [28]. Social
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constructs have a cyclical causal effect between their perception, (i.e., the effect of constructs

on their surroundings), and their formation story (i.e., the effect of the surroundings on

the definition of the construct) [25]. Causal models, which are directed acyclic graphs by

definition [45], cannot capture this cyclic relationship. One way in which this thesis addresses

this limitation is by constraining the meaning of a social construct, such as gender, to its

effect on the biased model itself, with respect to a bias evaluation dataset. In this sense,

the gender of a noun phrase within a sentence has a causal effect on the language model,

while the language model does not contribute to the definition of the high-level concept

of gender. As language models become integrated into online resources and communities,

this approach may no longer effective – one can foresee a future in which social constructs

such as gender, race, or religion are partly defined by the same language models that we are

seeking to debias with respect to these constructs.



7. Conclusion and Future Work

In this thesis, we assert a theoretical connection between causal interpretability and coun-

terfactual fairness. Utilizing causal abstractions and a new intervention generation method,

we debias state-of-the-art language models with respect to real-world principles (i.e., that a

text’s communicative purpose plays a role within image description tasks) and ethical prin-

ciples (i.e., that the gender of a sentence’s subject should not affect the overall sentiment of

the sentence). We hope that future research will build atop of our method by post-processing

existing language models to generate interpretable, unbiased language models with similar

capabilities.

The field of NLP is uniquely situated in that its technology is far better at generating

realistic-looking solutions than evaluating said solutions. We encourage the field of NLP to

place the evaluation of language models – for bias, toxicity, fairness, understanding, general

intelligence, sentience, or even consciousness – as a top priority. We hope that this thesis

provides a direction towards designing such evaluation processes for bias, fairness, and

interpretability, that future research will undertake.
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